3.74 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \cosh ^{-1}(c x))}{x^2} \, dx\)

Optimal. Leaf size=197 \[ -\frac {3}{2} c^2 d x \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )+\frac {3 c d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b \sqrt {c x-1} \sqrt {c x+1}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac {b c d \log (x) \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}}+\frac {b c^3 d x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

-(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x-3/2*c^2*d*x*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)+1/4*b*c^3*d*x^2
*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)+3/4*c*d*(a+b*arccosh(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/(c*x-1)^
(1/2)/(c*x+1)^(1/2)+b*c*d*ln(x)*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.54, antiderivative size = 209, normalized size of antiderivative = 1.06, number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5798, 5740, 5683, 5676, 30, 14} \[ -\frac {3}{2} c^2 d x \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )+\frac {3 c d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b \sqrt {c x-1} \sqrt {c x+1}}-\frac {d (1-c x) (c x+1) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac {b c^3 d x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {c x-1} \sqrt {c x+1}}+\frac {b c d \log (x) \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^2,x]

[Out]

(b*c^3*d*x^2*Sqrt[d - c^2*d*x^2])/(4*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (3*c^2*d*x*Sqrt[d - c^2*d*x^2]*(a + b*Arc
Cosh[c*x]))/2 - (d*(1 - c*x)*(1 + c*x)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x + (3*c*d*Sqrt[d - c^2*d*x^2
]*(a + b*ArcCosh[c*x])^2)/(4*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (b*c*d*Sqrt[d - c^2*d*x^2]*Log[x])/(Sqrt[-1 + c
*x]*Sqrt[1 + c*x])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5683

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)], x_Symbol] :
> Simp[(x*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/2, x] + (-Dist[(Sqrt[d1 + e1*x]*Sqrt[d2 + e2
*x])/(2*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x] - Dis
t[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(2*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[x*(a + b*ArcCosh[c*x])^(n - 1)
, x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[n, 0]

Rule 5740

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x]
+ (-Dist[(2*e1*e2*p)/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c
*x])^n, x], x] - Dist[(b*c*n*(-(d1*d2))^(p - 1/2)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sq
rt[-1 + c*x]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
&& IntegerQ[p - 1/2]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^2} \, dx &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {(-1+c x)^{3/2} (1+c x)^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^2} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \frac {-1+c^2 x^2}{x} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 c^2 d \sqrt {d-c^2 d x^2}\right ) \int \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {3}{2} c^2 d x \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \left (-\frac {1}{x}+c^2 x\right ) \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 c^2 d \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 b c^3 d \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{2 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {b c^3 d x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {3}{2} c^2 d x \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x}+\frac {3 c d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^2}{4 b \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c d \sqrt {d-c^2 d x^2} \log (x)}{\sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.08, size = 223, normalized size = 1.13 \[ \frac {1}{8} \left (12 a c d^{3/2} \tan ^{-1}\left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (c^2 x^2-1\right )}\right )-\frac {4 a d \left (c^2 x^2+2\right ) \sqrt {d-c^2 d x^2}}{x}+4 b c d \sqrt {d-c^2 d x^2} \left (\frac {2 \log (c x)+\cosh ^{-1}(c x)^2}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)}-\frac {2 \cosh ^{-1}(c x)}{c x}\right )+\frac {b c d \sqrt {d-c^2 d x^2} \left (2 \cosh ^{-1}(c x)^2+\cosh \left (2 \cosh ^{-1}(c x)\right )-2 \cosh ^{-1}(c x) \sinh \left (2 \cosh ^{-1}(c x)\right )\right )}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^2,x]

[Out]

((-4*a*d*(2 + c^2*x^2)*Sqrt[d - c^2*d*x^2])/x + 12*a*c*d^(3/2)*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 +
 c^2*x^2))] + 4*b*c*d*Sqrt[d - c^2*d*x^2]*((-2*ArcCosh[c*x])/(c*x) + (ArcCosh[c*x]^2 + 2*Log[c*x])/(Sqrt[(-1 +
 c*x)/(1 + c*x)]*(1 + c*x))) + (b*c*d*Sqrt[d - c^2*d*x^2]*(2*ArcCosh[c*x]^2 + Cosh[2*ArcCosh[c*x]] - 2*ArcCosh
[c*x]*Sinh[2*ArcCosh[c*x]]))/(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)))/8

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a c^{2} d x^{2} - a d + {\left (b c^{2} d x^{2} - b d\right )} \operatorname {arcosh}\left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^2,x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arccosh(c*x))*sqrt(-c^2*d*x^2 + d)/x^2, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.52, size = 427, normalized size = 2.17 \[ -\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{d x}-a \,c^{2} x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}-\frac {3 a \,c^{2} d x \sqrt {-c^{2} d \,x^{2}+d}}{2}-\frac {3 a \,c^{2} d^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}+\frac {3 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )^{2} c d}{4 \sqrt {c x -1}\, \sqrt {c x +1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} d \,\mathrm {arccosh}\left (c x \right ) x^{3}}{2 \left (c x +1\right ) \left (c x -1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{3} d \,x^{2}}{4 \sqrt {c x +1}\, \sqrt {c x -1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c d \,\mathrm {arccosh}\left (c x \right )}{\sqrt {c x +1}\, \sqrt {c x -1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} d \,\mathrm {arccosh}\left (c x \right ) x}{2 \left (c x +1\right ) \left (c x -1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c d}{8 \sqrt {c x +1}\, \sqrt {c x -1}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) d}{\left (c x +1\right ) \left (c x -1\right ) x}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) c d}{\sqrt {c x -1}\, \sqrt {c x +1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^2,x)

[Out]

-a/d/x*(-c^2*d*x^2+d)^(5/2)-a*c^2*x*(-c^2*d*x^2+d)^(3/2)-3/2*a*c^2*d*x*(-c^2*d*x^2+d)^(1/2)-3/2*a*c^2*d^2/(c^2
*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+3/4*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2
)*arccosh(c*x)^2*c*d-1/2*b*(-d*(c^2*x^2-1))^(1/2)*c^4*d/(c*x+1)/(c*x-1)*arccosh(c*x)*x^3+1/4*b*(-d*(c^2*x^2-1)
)^(1/2)*c^3*d/(c*x+1)^(1/2)/(c*x-1)^(1/2)*x^2-b*(-d*(c^2*x^2-1))^(1/2)*c*d/(c*x+1)^(1/2)/(c*x-1)^(1/2)*arccosh
(c*x)-1/2*b*(-d*(c^2*x^2-1))^(1/2)*c^2*d/(c*x+1)/(c*x-1)*arccosh(c*x)*x-1/8*b*(-d*(c^2*x^2-1))^(1/2)*c*d/(c*x+
1)^(1/2)/(c*x-1)^(1/2)+b*(-d*(c^2*x^2-1))^(1/2)*arccosh(c*x)*d/(c*x+1)/(c*x-1)/x+b*(-d*(c^2*x^2-1))^(1/2)/(c*x
-1)^(1/2)/(c*x+1)^(1/2)*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*c*d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{2} \, {\left (3 \, \sqrt {-c^{2} d x^{2} + d} c^{2} d x + 3 \, c d^{\frac {3}{2}} \arcsin \left (c x\right ) + \frac {2 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}}{x}\right )} a + b \int \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^2,x, algorithm="maxima")

[Out]

-1/2*(3*sqrt(-c^2*d*x^2 + d)*c^2*d*x + 3*c*d^(3/2)*arcsin(c*x) + 2*(-c^2*d*x^2 + d)^(3/2)/x)*a + b*integrate((
-c^2*d*x^2 + d)^(3/2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/x^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^2,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*acosh(c*x))/x**2,x)

[Out]

Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*acosh(c*x))/x**2, x)

________________________________________________________________________________________